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The function Tj(1) is referred to as the choice func- 
tion. In the above equation, a- is a Fuzzy ART net- 
work parameter, called the choice parameter, IAWj 
is a vector whose i-th component (1 5 i 5 2M) is 
equal to  the minimum of & and Wji (the operator 
A is referred to aa the MIN operator and IAW, is 
called the MIN of I and Wj), and I 9 I designatea the 
size of a vector, where the size of a vector is defined 
to be the sum of its components. 

The node in the F2 layer which receives the largest 
input Tj (I) will be choeen to represent the input pat- 
tern I. Assume that node J in the F2 layer receives 
the largest such input. The appropriate" of J to  
repreaent the input pattern is baeed on the vigilance 
criterion. This criterion is aatided if 

(4) 

where p , the vigilance parameter, may take values in 
the interval [0,1]. If node J fails the vigilance crite- 
rion, it is re& and a search for another node in the Fz 
layer to  repreaent the input pattern starts. The reset 
of node J is accomplished by the orienting subsystem 
in Fuzzy ART. If node J passes the vigilance crite- 
rion, learning starts and the top-down weight vector 
WJ is updated as follows: 

WJ = (1 - a m  + B(IAWJ) ( 5 )  

where p is a third Fuzzy ART parameter, called leam- 
ing rate, which may aasume values in the interval 
(0,1]. If = 1 the learning is called fast learning, 
and if 0 < < 1 it is called slow learning. If a 
node has previously coded an input pattern, then it 
is said to be committed; otherwise, it  is said to be 
uncommitted. A special type of slow learning, called 
fast-commit slowrecode, is one in which fast learning 
occurs (i.e., @ = 1) when the chosen node in the FZ 
layer is uncommitted, and slow learning occurs (i.e., 
0 < B < 1) when the chosen node is committed. 

The vector of topdown weights from a committed 
node in the F2 layer is called a template. Consider 
now an input pattern I preeented to the Fuzzy ART 
architecture, and an arbitrary template denoted by 
W,. A component of an input pattern I is indexed 
by i if i t  affects node i in the Fl layer, and the cor- 
responding component of template Wj is Wji. We 
can identify three types of templates with respect to 
an input pattern I: subaet templates, superset tem- 
platea and mixed templates. A template Wj is a 
subset template of an input pattern I if each one of 
the Wj components is smaller than or equal to its 
corresponding components in I. A template Wj is a 
superset template of an input pattern I if each one of 
the Wj components is larger than its corresponding 
components in I. A template is a mixed template if 
some of the Wj components are smaller than or equal 
to its corresponding components in I, and the rest of 

the Wj components are larger than ita correspond- 
ing components in 1. With reference to an input I,  
we designate a committed node in the Fz layer as 
subset, superset or mixed depending on whether its 
corresponding template is a subset, superset or mixed 
with respect to I. It  is worth noting that in the case 
of fast-learning or fast-commit slow-recode learning 
we can only define subset, mixed, and uncommitted 
templatea. Due to the complement coding nature of 
the input patterns, superset templates cannot be cre- 
ated in a Fuzzy ART architecture with fast-learning 
or faat-commit slow-recode learning. 

The following assumptions will be used at various 
points in the remainder of the paper to guarantee 
the validity of specific results: (i) fast learning, (ii) 
faet-commit slow-recode learning, (iii) binary input 
patterns, (iv) repeated or cyclic presentations of an 
input list of patterns, and (v) a sufficient number 
of nodes in the FZ layer. Assumptions (i) and (ii) 
have been discussed previously. Assumption (iii) im- 
plies that the input patterns presented to the Fuzzy 
ART architecture have binary (0 or 1) components. 
Most of the results in this paper are valid for ana- 
log or binary data. Only the properties presented in 
Section 6 require assumption (iii). Assumption (iv) 
corresponds to  the case where we have a list of input 
patterns, designated I' , 12, ..., P, which is presented 
either repeatedly or cyclically to Fuzzy ART. In re- 
peated presentations of the list, the order of the pat- 
tern presentation within the list is of no consequence, 
but in cyclic presentations of the list the patterns are 
always presented in the same order within each list 
(e.g. Ii,12, ..., l?,I1,Iz,  ..., P, and so on). Assump- 
tion (v) means that every time an input pattern I is 
presented to  Fuzzy ART there is a t  least one uncom- 
mitted node available at the FZ layer; this assumption 
is sufficient to guarantee that an appropriate node in 
the Fa layer will always be found to represent the 
input pattern. 

In the case where a list of input patterns is repeat- 
edly presented to the Fuzzy ART architecture, it is 
reasonable to ask how many list presentations does 
Fuzzy ART need to learn the input list; or equiv- 
alently, how many list presentations are needed for 
the weights to stabilize. We say that the weights in 
the Fuzzy ART architecture are stabilized by the end 
of the n-th list presentation, if in subsequent presen- 
tations of the list (i.e., list presentations 5 ra + 1) 
weights cannot be modified. Under the aforemen- 
tioned scenario (Le., repeated presentations of a list 
of input patterns) when weights are stabilized we also 
say that learning (of the list) is complete. After sta- 
bilization of the weights occurs, each pattern from 
the input list will have direct access to a node in the 
Fz layer (Assume there are enough nodes in the Fz 
layer). We say that a pattern I has direct access to 
a node j in the F2 layer if immediately after the pre- 
sentation of I at the Fl layer, j is chosen first and no 
reset of j occurs. 
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3 Template Properties 
In this section we discuss properties related with the 
templates created in a Fuzzy ART architecture. In 
particular, Theorem 3.1 states that the templates in 
Fumy ART are distinct, and Theorem 3.2 deals with 
the smallest poasible size of the templates. Corol- 
lary 3.2 ehows how the range of a is related to  the 
mallest  poeeible template si%. Theorem 3.3 focuses 
on the similarity among the templatee in Fuzzy ART. 
Finally, Corollary 3.3 shows how this similarity is af- 
fected by the ranges of the a and p parameters. 
THEOREM 3.1 
In  a Fuzzy ART architecture, all the templates are 
distinct. 
REMARKS: Thia theorem shows one of the good 
properties of Fuzzy ART: the templates can never 
be the same. It applies to binary or analog patterns, 
fast or slow learning and for any values of the a and 
p parameters. 
THEOREM 3.2 
In a Fuzzy ART architecture with a suficient number 
of nodes in the Fz layer, the size of a template is 
larger than a M / ( a  + M). For the binary paitems 
and fast learning case, the sixe of a template is larger 
than or equal to (a + l ) M / ( a  + M ) .  
Corollary 3.2 
In a Fuzzy ART architecture with binary patterns, 
fast learning, and a suficient number of nodes in the 
Fz layer, i f  a > M ( M  - L - l)/L, then the smallest 
possible template size is equal to M - L +  1 and there 
are at most L different template sizes, where L is an 
integer in the interval [l, M - 11. 
REMARKS: Theorem 3.2 and Corollary 3.2 are valid 
independently of the value of the vigilance parameter 
p. The smallest poseible template size increases as 
a increases. Furthermore, i t  is worth observing that 
with a sufficient number of nodes in FZ layer size-1 
templates cannot be created. 
THEOREM 3.3 
In a f i z zy  ART architecture with either fast-commit 
slow-recode or fast leaming, and a suficient number 
of nodes in the Fa layer, the size of the MIN of any 
two templates (the number of common 1’s  between 
any two templates in the binary input patterns and 
fast learning case) 

Range of a 

Corollary 3.3 
Under the conditions stated in Theorem 9.8, if a 5 
( M  - 2 L ) M / L  and p 5 1 - L / M ,  then IWIAW~I < 
M - L ,  where 0 5 L < M / 2 .  
REMARKS: Corollary 3.3 is a direct result of The- 
orem 3.3. They both show that the closeness of any 

Max. Number of Smallest 
‘&“late Sizes TemDlate Size 

two templates increases as p or a increases. The con- 
sequencee of Corollary 3.2 and Corollary 3.3 are de- 
picted in Tables l and 2. 
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Table 2: Consequences of Corollary 3.3 for M = 10 

4 Access Properties 
This section is entitled “Access properties” because 
here we present properties related with what type of 
nodes in the F2 layer will be chosen during a pattern’s 
presentation. In particular, Theorem 4.1 discusses 
the order of search among the nodes in the FZ layer 
during a pattern’s presentation. Theorem 4.2 states 
that with fast learning, uncommitted nodes in the F2 
layer will not be chosen after the first presentation 
of a list of input patterns. Theorem 4.3 states that 
a pattern will always directly access a node with a 
template equal to the pattern. Finally Theorem 4.4 
verifies that under certain conditions, after learning 
of an input list of patterns is complete, there may 
exist committed nodes in the F2 layer that are not 
directly accessed by any pattern from the input list. 

In Fuzzy ART, the search order among the nodes 
in the Fz layer depends on the choice parameter o. If 
a is small, a pattern tends to choose a node with the 
largest ratio pAWj I/lW, I, regardless of the size of 
(IAWj I. Therefore, subset nodes always have priority 
over other nodes. If CY is large, the size IIAW~ I plays 
a more important role in the choice of a node in the 
Fa layer. For any a Fuzzy ART follows the rules 
stated in Theorem 4.1: 
THEOREM 4.1 
In a Fuzzy ART architecture, when an input pattern 
I is presented at  the F1 layer, a node in the Fz layer 
i s  chosen according to the following rules: 
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(a) A subset node (if there is one) will be chosen over 
an uncommitted node. 

(b) Among all the subset nodes, the node with the 
largest template will be chosen first. 

(c) If a mixed node j with template Wj U accessed 
prior to a subset node J with template W J  then 
IMWjI > IWJ~ m w i  hold. 

(a) If there are no subset nodes, and for every mixed 
1MW.I node j: -F, 5 0.5, then an uncommitted 

node will be ciosen ouer any mixed node. 

THEOREM 4.2 
In a fizzy ART architecture with fast learning and 
repeated presentations of a list of input patterns, no 
uncommitted node will be chosen after the first list 
presentation. As a result, the total number of com- 
mitted nodes (or templates) cannot exceed the total 
number of patterns in the input list. 
REMARKS: This theorem provides an upper bound 
for the number of nodes needed in the Fz layer so 
that Fuzzy ART will learn all the patterns in an in- 
put list, provided that faet learning is employed. In 
practice, the number of categories (i.e., the number 
of nodes needed in the Fz layer) is usually much less 
than the number of patterns in the input list, and is 
an i n c r d n g  function of the choice parameter a and 
the vigilance. parameter p. 

THEOREM 4.3 
In a fizzy ART architecture, : f a  node J in the Fz 
layer has perfectly learned an input pattern I (i.e., 
W J = I ) ,  then when I is presented it will directly ac- 
cess node J .  
THEOREM 4.4 
In a f i x x y  ART architecture with repeated presen- 
tations of a list of input patterns, after learning is 
wmplete, there may exist committed nodes in the Fz 
layer that are not directly accessed by  any pattern in 
the input list. 

5 Reset Properties 
The propertiea discuesed in this section are byprod- 
ucta of the theoreme mentioned earlier. They are 
important to report though because they provide a 
different pmpective of viewing these theorems; this 
perspective involves the orienting subsystem in Fuzzy 
ART. For example, Theorem 5.1 s t a h  that under 
certain amumptione, no reset events are possible af- 
ter the first presentation of a list of input patterns, 
while Theorem 5.2 and Corollary 5.2 determine the 
effective range of the vigilance parameter, that is the 
range of p valuea that will allow reset events to oc- 
cur. Theorem 5.2 and Corollary 5.2 are also useful in 
directing us to choose appropriate a and p values for 
Fuzzy ART simulations. 

THEOREM 5.1 
In a f izzy  ART architecture with fast learning, and 
repeated presentations of a list of input patterns, no 
reset will occur after the first list presentation. 

REMARKS: Theorem 5.1 tells us that with fast learn- 
ing and repeated presentations of a list of input pat- 
terns, for list presentations > 2, there is no need to 
check on the vigilance criterion. In t e r m  of hard- 
ware, the orienting subsystem becomes inactive (au- 
tomatically disengaged) after the first list presenta- 
tion. In t e r m  of a software simulation of Fuzzy ART, 
we can disregard the orienting subsystem after the 
first list presentation in order to speed up the learn- 
ing. 

THEOREM 5.2 
In a f i z z y  ART architecture with a suficient number 
of nodes in the Fz layer, the vigilance parameter p 
should be larger than a. In other words, if p 5 
&, no reset wall ewer occur. In the case of binary 
patterns and fast learning the vigilance parameter p 
should be larger than &. 
REMARKS: This theorem demonstrates that if a is 
large, small vigilance cannot be effective. For exam- 
ple, if a = M, the vigilance should be larger than 
0.5, because if p 5 0.5, no reset will ever occur. 
On the other hand, given a vigilance parameter p ,  
if a 2 pM/(l- p ) ,  no reset will ever occur. Theo- 
rem 5.2 illustrates that the Fuzzy ART parameters a 
and p should be carefully chosen if we want the vigi- 
lance parameter p to have an effect on the operation 
of the network. 

Corollary 5.2 
In a f i z z y  ART architecture with binary patterns, 
fast learning, and a suficient number of nodes in the 
Fz layer, i f  a > M(M - L - l ) /L,  then the vigilance 
p should be larger than 1 - (L - l) /M, where L i s  an 
integer taking values in the interval [2, M - 11. 

6 Number of the List Presen- 
tations Needed 

In this section, we assume that a list of input pat- 
terns is repeatedly presented to the Fuzzy ART archi- 
tecture, and we derive results related to the number 
of list presentations required by Fuzzy ART to learn 
this list. In particular, Theorem 6.1 states that if the 
choice parameter a is relatively small then learning 
in F’uzzy ART will be completed in one list present& 
tion. Theorem 6.2 provides an upper bound on the 
number of list presentations needed by Fuzzy ART 
to learn the input list when a is relatively large (i.e., 
when a is not necessarily a8 small a8 it is required to 
validate Theorem 6.1). 
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THEOREM 6.1 
In a A x x y  ART architecture with binary patterns, 
fast learning, a suficient number of nodes in the F2 
layer, and repeated presentations of a list of input 
patterns, if a 5 p/(l - p ) ,  then the weights wilI be 
stabilixed an 1 list presentation. 
REMARKS: (1) In the extreme case where p = 1, 
each pattern from the input list will choose a differ- 
ent node in the F2 layer. In this cue ,  for any value of 
a the weighta will be stabilised in one list present* 
tion. (2) By Corollary 3.2, for binary input patterns 
and faat learning, the smallest possible template size 
is greater than or equal to 2, and aa a result the vigi- 
lance parameter p should be larger than 2 / M .  There- 
fore, if p 5 2/M (including 0), Theorem 6.1 is valid 
for a 5 2 / ( M  - 2). (3) A sufficient condition on the 
a values that will guarantee the validity of Theorem 
6.1, even when the input patterns are analog, is 

(7) 

where W. is any mixed template of pattern I. Un- 
fortunady, even if we know the exact p value, we 
cannot find a lower bound for the right hand side of 
(7) because IWj I - ILAWj I can be arbitrarily small 
in the analog caae. In conclusion, we can only state 
that Theorem 6.1 is also valid for analog input pat- 
terns except that a haa to be chosen very, very small. 

Before we present the next theorem on the number 
of list preeentations, let us state a lemma first. 
Lemma 1 
In a f i x x y  ART architecture with binary patterns, 
fast learning, and repeated presentations of a list of 
input patterns, the following rules are valid in list pre- 
sentations 2 2 (IW I is the minimum template size at 
the end of the first list presentation). 

(1) No template of size IWI or smaller can be 
created. 

( 2 )  A template of size IWI or IWI + 1 cannot be 
modified. 

( 3 )  A template of sire IWl+ L ( L  1 2) can be modi- 
fied only b y  the patterns which have largest subset 
template of size H 5 IWl+ L - 2. And the new 
template sixe should be greater than or equal to 
H+1.  

THEOREM 6.2 
In a f i zzy  ART architecture with binay patterns, 
fast learning, a suficient number of nodes in the F2 
layer, and repeated presentations of a list of input 
patterns, i f  Q > i M ( M  - L - 1) or p > 1 - L / M ,  
then the weights will be stabilixed in L - 1 list presen- 
tations, where L is an integer taking the value in the 
interval [2,4]. 

REMARKS: It ie worth mentioning that Theorem 6.2 
is valid for L = 5 under the additional assumptions 
that the input patterns are presented cyclically and 
M >, 9. The consequences of Theorem 6.1 and The- 
orem 6.2 for L 5 5 ,  where M is arbitrary or M = 10, 
are depicted in Table 3. We could not prove Theo- 
rem 6.2 for L > 5 because its proof becomes very com- 
plicated. However, by looking at the results of Ta, 
ble 3, we are encouraged to believe that there seems 
to be a pattern relating the range of a or p values and 
the number of list presentations needed to learn an 
arbitrary binary list repeatedly presented to Fuzzy 
ART. Hence, we were tempted to formulate a con- 
jecture that extends the results of Table 3 over the 
entire range of a and p value. We decided not to 
do so because of the additional assumptions needed 
to verify the validity of Theorem 6.2 for L = 5 (i.e., 
cyclic presentations of the input list and M 2 9). 
Nevertheless it is worth mentioning that out of hun- 
dreds of simulations performed with random input 
patterns we found that the maximum number of list 
presentations needed for weight stabilization in Fuzzy 
ART waa 3 for 2 simulations amd 2 for the rest of the 
simulations. 

7 Summary 
We have examined the Fuzzy ART algorithm care- 
fully from a number of different perspectives. For ex- 
ample, in Section 3 we demonstrated that Fuzzy ART 
templates are distinct ) we calculated a lower bound 
on the template size and we found an upper bound on 
the similarity of the templates created. Furthermore, 
in Section 4, we focused on access properties, investi- 
gating the order of search of the F2 layer nodes, find- 
ing an upper bound on the number of nodes needed 
in the F2 layer of Fuzzy ART to learn an arbitrary 
list of input patterns, and proving the direct access 
property of patterns to perfectly learned templates. 
Also, in Section 5 ,  we concentrated on the orienting 
subsystem and reset events and elaborated on the in- 
terrelationship between the a and p parameter values 
needed in Fuzzy ART simulations. Finally, in Section 
6, we shifted our attention to the number of list pre- 
sentations required by Fuzzy ART to learn an arbi- 
trary list of patterns repeatedly presented to it. Most 
of the results presented in Section 6 were valid for bi- 
nary input patterns and fast learning. The strongest 
result (Theorem 6.1) stated that for small a values 
(i.e., a 5 p/(l - p ) ) ,  learning will be complete in one 
list presentation. Weaker results were also presented 
in Section 6, where in order to come up with a defi- 
nite upper bound on the number of list presentations 
needed we restricted either the a range or the p range. 
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Table 3: Consequences of Theorem 6.1 and Theorem 6.2 for L 5 5 

(a) General Case 

Range of a Range of p 

(b)Special Case for M = 10 

Range of a Range of p 

a E  (0, m z (  e, 0.25)] and p E (0,1] 

a€ (35,m) or p E (0.8,1] 

CYE (20,351 or p E (0.7,0.8] 

(YE (12.5,20] or p E (0.6,0.7] 

CY€ (8,12.5] or p E (0.5,0.6] 

5 M - 1  1 

- < 2  1 

1 3  - < 2  

- c 4  53 

1 5  1 4' 

# of template aims 

5 9  

5 2  

5 3  

1 4  

5 5  

# of lists needed 1 

1 

1 

12 

13 

5 4' 

*Note: The last line (correaponding to the extention of Theorem 6.2 for L = 5) is valid 
under the assumptions that the input patterns are presented cyclicly and M 2 9 
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