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Abstract-This paper presents some important
properties of the Fugzy ART npeural network algo-
rithm. The properties described in the paper are
distinguished into a number of categories. These in-
clude template, access, and reset properties, as well
as properties related to the number of list presenta-
tions needed for weight stabilization. These proper-
ties provide numerous insights as to how Fuzzy ART
operates. Furthermore, the effect of the Fuzzy ART
parameters « and p on the functionality of the algo-
rithm is clearly illustrated.

1 Introduction

A neural network model that can be used to cluster
arbitrary binary or analog data was derived by Car-
penter et al. [1]. This model is termed Fuzzy ART
in reference to the adaptive resonance theory. One of
the major reasons for the development of Fuzzy ART
was to remedy the inability of ART1, as well as Pre-
dictive ART architectures based on ART1 modules,
to classify analog data. Although the learning prop-
erties of ART1 are well understood, the same cannot
be said for the Fuzzy ART algorithm.

In this paper we present useful properties of the
Fuzzy ART algorithm which facilitate the under-
standing of its operation. For clarity purposes
we split the properties into four different cate-
gories: template properties (Section 3), access prop-
erties (Section 4), reset properties (Section 5), and
properties related to the number of list presentations
needed for the weight stabilization (Section 6). These
properties are presented in the form of theorems and
corollaries (their proofs are omitted in order to save
space; the interested reader can find the proofs in
{2]). Some of the properties discussed in this paper
involve the size/similarities of templates created in
Fuzzy ART, as well as the number of list presen-
tations required to learn an arbitrary list of binary
input patterns repeatedly presented to Fuzzy ART.
For most of the Fuzzy ART properties mentioned in
this manuscript, the effects of parameters o and p are
clearly illustrated.
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2 Preliminaries—Notations

The Fuzzy ART algorithm is described in detail by
Carpenter et al. [1]. In this section we only provide in-
formation that is necessary to understand the results
developed here. The Fuzzy ART architecture consists
of two layers of nodes, designated F, and F;. Inputs
are presented at the Fy layer. If a = (a1, ...,apn) de-
notes a vector, with each of its components in the
interval [0, 1], then the input to the Fy layer is a vec-
tor I such that

(1)

I=(a,a®) =(ai,...,am,af,...,a%)

where

ai=1-a;; 1<i<M (2)
This type of transformation, called complement cod-
ing, is necessary for the successful operation of Fuzzy
ART, especially when the input vector I is of ana-
log nature (for more details see [1]). The F3 layer
in Fuzzy ART is usually referred to as the category
representation layer because its nodes denote the cat-
egories to which the input patterns belong.

The F, layer has 2M nodes, while the F; layer has
N nodes. We use the index ¢ to designate nodes in
the Fy layer and the index j to designate nodes in
the F; layer. There are bottom-up weight connections
emanating from the nodes in the F) layer and con-
verging to the nodes in the Fy layer. Similarly, there
are top-down weight connections emanating from the
nodes in the F; layer and converging to the nodes in
the Fy layer. The bottom-up weights converging to
a node in the F3 layer can be completely defined by
the top-down weights emanating from this F3 node.
Hence, only the set of top-down weights need to be
defined. In particular, we let W; = (W1, ..., Wjaar))
designate the vector of top-down weights emanating
from node j in the F; layer.

When an input pattern I is applied at the F; layer,
it produces an input T;(I) at node j in the F; layer.
This input T (T) is given by the following equation:
1AW,

(3)
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The function T;(I) is referred to as the choice func-
tion. In the above equation, « is a Fuzzy ART net-
work parameter, called the choice parameter, IAW,
is a vector whose i-th component (1 < i < 2M) is
equal to the minimum of I; and W;; (the operator
A is referred to as the MIN operator and IAW; is
called the MIN of I and W;), and | - | designates the
size of a vector, where the size of a vector is defined
to be the sum of its components.

The node in the F; layer which receives the largest
input T; (I) will be chosen to represent the input pat-
tern I. Assume that node J in the F; layer receives
the largest such input. The appropriateness of J to
represent the input pattern is based on the vigilance
criterion. This criterion is satisfied if

|[IAW | > 4

w2 ®
where p , the vigilance parameter, may take values in
the interval [0, 1]. If node J fails the vigilance crite-
rion, it is reset and a search for another node in the F3
layer to represent the input pattern starts. The reset
of node J is accomplished by the orienting subsystem
in Fuzzy ART. If node J passes the vigilance crite-
rion, learning starts and the top-down weight vector
‘W is updated as follows:

W; =(1-8W,; +B8(IAW,) (5)

where § is a third Fuzzy ART parameter, called learn-
ing rate, which may assume values in the interval
(0,1]. If 8 = 1 the learning is called fast learning,
and if 0 < B < 1 it is called slow learning. If a
node has previously coded an input pattern, then it
is said to be commitied; otherwise, it is said to be
uncommitted. A special type of slow learning, called
fast-commit slow-recode, is one in which fast learning
occurs (i.e., § = 1) when the chosen node in the F3
layer is uncommitted, and slow learning occurs (i.e.,
0 < # < 1) when the chosen node is committed.

The vector of top-down weights from a committed
node in the Fy layer is called a template. Consider
now an input pattern I presented to the Fuzzy ART
architecture, and an arbitrary template denoted by
W;. A component of an input pattern I is indexed
by i if it affects node i in the F, layer, and the cor-
responding component of template W; is W,,. We
can identify three types of templates with respect to
an input pattern I: subset templates, superset tem-
plates and mixed templates. A template W; is a
subset template of an input pattern I if each one of
the W; components is smaller than or equal to its
corresponding components in I. A template W, is a
superset template of an input pattern I if each one of
the W; components is larger than its corresponding
components in I. A template is a mized template if
some of the W; components are smaller than or equal
to its corresponding components in I, and the rest of

the W; components are larger than its correspond-
ing components in I. With reference to an input I,
we designate a committed node in the Fy layer as
subset, superset or mixed depending on whether its
corresponding template is a subset, superset or mixed
with respect to I. It is worth noting that in the case
of fast-learning or fast-commit slow-recode learning
we can only define subset, mixed, and uncommitted
templates. Due to the complement coding nature of
the input patterns, superset templates cannot be cre-
ated in a Fuzzy ART architecture with fast-learning
or fast-commit slow-recode learning.

The following assumptions will be used at various
points in the remainder of the paper to guarantee
the validity of specific results: (i) fast learning, (ii)
fast-commit slow-recode learning, (iii) binary input
patterns, (iv) repeated or cyclic presentations of an
input list of patterns, and (v) a sufficient number
of nodes in the F, layer. Assumptions (i) and (ii)
have been discussed previously. Assumption (iii) im-
plies that the input patterns presented to the Fuzzy
ART architecture have binary (0 or 1) components.
Most of the results in this paper are valid for ana-
log or binary data. Only the properties presented in
Section 6 require assumption (iii). Assumption (iv)
corresponds to the case where we have a list of input
patterns, designated I',12,..., PP, which is presented
either repeatedly or cyclically to Fuzzy ART. In re-
peated presentations of the list, the order of the pat-
tern presentation within the list is of no consequence,
but in cyclic presentations of the list the patterns are
always presented in the same order within each list
(e.g. 2, P, I'NI, .., and so on). Assump-
tion (v) means that every time an input pattern I is
presented to Fuzzy ART there is at least one uncom-
mitted node available at the F; layer; this assumption
is sufficient to guarantee that an appropriate node in
the Fy layer will always be found to represent the
input pattern.

In the case where a list of input patterns is repeat-
edly presented to the Fuzzy ART architecture, it is
reasonable to ask how many list presentations does
Fuzzy ART need to learn the input list; or equiv-
alently, how many list presentations are needed for
the weights to stabilize. We say that the weights in
the Fuzzy ART architecture are stabilized by the end
of the n-th list presentation, if in subsequent presen-
tations of the list (i.e., list presentations > n + 1)
weights cannot be modified. Under the aforemen-
tioned scenario (i.e., repeated presentations of a list
of input patterns) when weights are stabilized we also
say that learning (of the list) is complete. After sta-
bilization of the weights occurs, each pattern from
the input list will have direct access to a node in the
F; layer (Assume there are enough nodes in the F
layer). We say that a pattern I has direct access to
a node j in the Fy layer if immediately after the pre-
sentation of I at the F layer, j is chosen first and no
reset of j occurs.
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3 Template Properties

In this section we discuss properties related with the
templates created in a Fuzzy ART architecture. In
particular, Theorem 3.1 states that the templates in
Fuzzy ART are distinct, and Theorem 3.2 deals with
the smallest possible size of the templates. Corol-
lary 3.2 shows how the range of « is related to the
smallest possible template size. Theorem 3.3 focuses
on the similarity among the templates in Fuzzy ART.
Finally, Corollary 3.3 shows how this similarity is af-
fected by the ranges of the o and p parameters.

THEOREM 3.1

In a Fuzzy ART architecture, all the templates are
distinct.

REMARKS: This theorem shows one of the good
properties of Fuzzy ART: the templates can never
be the same. It applies to binary or analog patterns,
fast or slow learning and for any values of the « and
p parameters.

THEOREM 3.2

In a Fuzzy ART architecture with a sufficient number
of nodes in the Fy layer, the size of a template is
larger than aM /(e + M). For the binary patterns
and fast learning case, the size of a template is larger
than or equal to (e + 1)M /(e + M).

Corollary 3.2

In a Fuzzy ART architecture with binary patterns,
fast learning, and a sufficient number of nodes in the
Fy layer, ifa > M(M — L —1)/L, then the smallest
possible template size is equal to M — L+ 1 and there
are at most L different template sizes, where L is an
integer in the interval [1, M — 1].

REMARKS: Theorem 3.2 and Corollary 3.2 are valid
independently of the value of the vigilance parameter
p. The smallest possible template size increases as
« increases. Furthermore, it is worth observing that
with a sufficient number of nodes in Fy layer size-1
templates cannot be created.

THEOREM 3.3

In a Fuzzy ART architecture with esther fast-commit
slow-recode or fast learning, and a sufficient number
of nodes in the Fy layer, the size of the MIN of any
two templates (the number of common I’s between
any two templates in the binary input patterns and
fast learning case)

a+ M
lW]/\WzI < max {pM, Mm-} (6)

Corollary 3.3

Under the conditions stated in Theorem 3.8, if o <
(M —2L)M/L and p<1—L/M, then [WiAW,| <
M—L, where 0< L < M/2.

REMARKS: Corollary 3.3 is a direct result of The-
orem 3.3. They both show that the closeness of any

two templates increases as p or « increases. The con-
sequences of Corollary 3.2 and Corollary 3.3 are de-
picted in Tables 1 and 2.

Table 1: Consequences of Corollary 3.2 for M = 10

Range of & | Max. Number of Smallest
Template Sizes | Template Size

(0, 1.25] 9 2
(1.25, 20/7) 8 3
(20/7, 5] 7 4
(5, 8 6 5
(8, 12.5] 5 3
(12.5, 20] 4 7
(20, 35 3 8
(35, 80 2 9
(80, o0 1 10

Table 2: Consequences of Corollary 3.3 for M = 10

Range of « | Range of p | |[W1AW,]
(30, 80] (0.8,0.9 <9
(40/3,30] | (0.7,0.8 <8
(5, 40/3] (0.6,0.7 <7
(0, 5] (0, 0.6] <6

4 Access Properties

This section is entitled “Access properties” because
here we present properties related with what type of
nodes in the F; layer will be chosen during a pattern’s
presentation. In particular, Theorem 4.1 discusses
the order of search among the nodes in the F, layer
during a pattern’s presentation. Theorem 4.2 states
that with fast learning, uncommitted nodes in the F;
layer will not be chosen after the first presentation
of a list of input patterns. Theorem 4.3 states that
a pattern will always directly access a node with a
template equal to the pattern. Finally Theorem 4.4
verifies that under certain conditions, after learning
of an input list of patterns is complete, there may
exist committed nodes in the F; layer that are not
directly accessed by any pattern from the input list.

In Fuzzy ART, the search order among the nodes
in the F; layer depends on the choice parameter «. If
« i8 small, a pattern tends to choose a node with the
largest ratio [IAW,|/|W,|, regardless of the size of
[IAW,|. Therefore, subset nodes always have priority
over other nodes. If « is large, the size [IAW,| plays
a more important role in the choice of a node in the
Fy layer. For any o Fuzzy ART follows the rules
stated in Theorem 4.1:

THEOREM 4.1

In a Fuzzy ART architecture, when an input pattern
I is presented at the Fy layer, a node in the Fy layer
is chosen according to the following rules:
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(a) A subset node (if there is one) will be chosen over
an uncommitied node.

(b) Among all the subset nodes, the node with the
largest template will be chosen first.

(c) If a mized node j with template W; is accessed
prior to a subset node J with template W; then
IAW;| > (W ;| must hold.

(d) If there are no subset nodes, and for every mized

node j: 'l:'AW{' < 0.5, then an uncommitied

node will be c):onen over any mized node.

THEOREM 4.2

In o Fuzzy ART architecture with fast learning and
repeated presentations of a list of input patierns, no
uncommitted node will be chosen after the first list
presentation. As a result, the total number of com-
mitted nodes (or iemplates) cannot exceed the total
number of patierns in the input list.

REMARKS: This theorem provides an upper bound
for the number of nodes needed in the F; layer so
that Fuzgy ART will learn all the patterns in an in-
put list, provided that fast learning is employed. In
practice, the number of categories (i.e., the number
of nodes needed in the F; layer) is usually much less
than the number of patterns in the input list, and is
an increasing function of the choice parameter o and
the vigilance parameter p.

THEOREM 4.3

In a Fuzzy ART architecture, if ¢ node J in the F3
layer has perfectly learned an input paitern I (i.e.,
W;=I), then when I is presented it will directly ac-
cess node J.

THEOREM 4.4

In a Fuizzy ART architecture with repeated presen-
tations of a list of input patierns, after learning is
complete, there may exist commitied nodes in the F3
layer that are not directly accessed by any pattern in
the input list.

5 Reset Properties

The properties discussed in this section are byprod-
ucts of the theorems mentioned earlier. They are
important to report though because they provide a
different perspective of viewing these theorems; this
perspective involves the orienting subsystem in Fuzzy
ART. For example, Theorem 5.1 states that under
certain assumptions, no reset events are possible af-
ter the first presentation of a list of input patterns,
while Theorem 5.2 and Corollary 5.2 determine the
effective range of the vigilance parameter, that is the
range of p values that will allow reset events to oc-
cur. Theorem 5.2 and Corollary 5.2 are also useful in
directing us to choose appropriate « and p values for
Fuzzy ART simulations.

THEOREM 5.1

In a Fuzzy ART architecture with fast learning, and
repeated presentations of a list of input patterns, no
reset will occur after the first list presentation.

REMARKS: Theorem 5.1 tells us that with fast learn-
ing and repeated presentations of a list of input pat-
terns, for list presentations > 2, there is no need to
check on the vigilance criterion. In terms of hard-
ware, the orienting subsystem becomes inactive (au-
tomatically disengaged) after the first list presenta-
tion. In terms of a software simulation of Fuzzy ART,
we can disregard the orienting subsystem after the
first list presentation in order to speed up the learn-

ing.
THEOREM 5.2

In a Fuzzy ART architecture with a sufficient number
of nodes in the Fy layer, the vigilance parameter p
should be larger than z%7. In other words, if p <
&%‘f, no reset will ever occur. In the case of binary
patterns and fast learning, the vigilance parameter p
should be larger than a%’_%.

REMARKS: This theorem demonstrates that if « is
large, small vigilance cannot be effective. For exam-
ple, if @ = M, the vigilance should be larger than
0.5, because if p < 0.5, no reset will ever occur.
On the other hand, given a vigilance parameter p,
if @ > pM /(1 — p), no reset will ever occur. Theo-
rem 5.2 illustrates that the Fuzzy ART parameters o
and p should be carefully chosen if we want the vigi-
lance parameter p to have an effect on the operation
of the network.

Corollary 5.2

In a Fuzzy ART architecture with binary patterns,
fast learning, and a sufficient number of nodes in the
F3 layer, ifa > M(M — L —1)/L, then the vigilance
p should be larger than 1 — (L —1)/M, where L is an
integer taking values in the interval [2, M — 1].

6 Number of the List Presen-
tations Needed

In this section, we assume that a list of input pat-
terns is repeatedly presented to the Fuzzy ART archi-
tecture, and we derive results related to the number
of list presentations required by Fuzzy ART to learn
this list. In particular, Theorem 6.1 states that if the
choice parameter « is relatively small then learning
in Fuzzy ART will be completed in one list presenta-
tion. Theorem 6.2 provides an upper bound on the
number of list presentations needed by Fuzzy ART
to learn the input list when « is relatively large (i.e.,
when o is not necessarily as small as it is required to
validate Theorem 6.1).
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THEOREM 6.1

In a Fuzzy ART architecture with binary patlerns,
fast learning, a sufficient number of nodes in the F,
layer, and repeated presentations of a list of input
patterns, if @ < p/(1—p), then the weights will be
stabilized in 1 list presentation.

REMARKS: (1) In the extreme case where p = 1,
each pattern from the input list will choose a differ-
ent node in the F3 layer. In this case, for any value of
o the weights will be stabilized in one list presenta-
tion. (2) By Corollary 3.2, for binary input patterns
and fast learning, the smallest possible template size
is greater than or equal to 2, and as a result the vigi-
lance parameter p should be larger than 2/M. There-
fore, if p < 2/M (including 0), Theorem 6.1 is valid
for @ < 2/(M - 2). (3) A sufficient condition on the
« values that will guarantee the validity of Theorem
6.1, even when the input patterns are analog, is

p(IW;| — [IAW;))

a< 1=,

(7)

where W is any mixed template of pattern I. Un-
fortunately, even if we know the exact p value, we
cannot find a lower bound for the right hand side of
(7) because |W;| — [IAW;| can be arbitrarily small
in the analog case. In conclusion, we can only state
that Theorem 6.1 is also valid for analog input pat-
terns except that o has to be chosen very, very small.

Before we present the next theorem on the number
of list presentations, let us state a lemma first.

Lemma 1

In a Fuzzy ART architecture with binary patterns,
fast learning, and repeated presentations of a list of
input patierns, the following rules are valid in list pre-
sentations > 2 (|W| is the minimum template size at
the end of the first list presentation).

(1) No template of size |W| or smaller can be
created.

(2) A template of size [W| or |[W| + 1 cannot be
modified.

(3) A template of size (W |+ L (L > 2) can be modi-
fied only by the patterns which have largest subset
template of size H < |W|+ L —2. And the new
template size should be greater than or equal to
H+1.

THEOREM 6.2

In a Fuzzy ART architecture with binary patterns,
fast learning, o sufficient number of nodes in the F,
layer, and repeated presentations of a list of input
patterns, ifa > tM(M —L—1) or p > 1 - L/M,
then the weights will be stabilized in L—1 list presen-
tations, where L is an integer taking the value in the
interval [2,4].

REMARKS: It is worth mentioning that Theorem 6.2
is valid for L = 5 under the additional assumptions
that the input patterns are presented cyclically and
M > 9. The consequences of Theorem 6.1 and The-
orem 6.2 for L < 5, where M is arbitrary or M = 10,
are depicted in Table 3. We could not prove Theo-
rem 6.2 for L > 5 because its proof becomes very com-
plicated. However, by looking at the results of Ta-
ble 3, we are encouraged to believe that there seems
to be a pattern relating the range of  or p values and
the number of list presentations needed to learn an
arbitrary binary list repeatedly presented to Fuzzy
ART. Hence, we were tempted to formulate a con-
jecture that extends the results of Table 3 over the
entire range of o and p value. We decided not to
do 8o because of the additional assumptions needed
to verify the validity of Theorem 6.2 for L = 5 (i.e.,
cyclic presentations of the input list and M > 9).
Nevertheless it is worth mentioning that out of hun-
dreds of simulations performed with random input
patterns we found that the maximum number of list
presentations needed for weight stabilization in Fuzzy
ART was 3 for 2 simulations and 2 for the rest of the
simulations.

7 Summary

We have examined the Fuzzy ART algorithm care-
fully from a number of different perspectives. For ex-
ample, in Section 3 we demonstrated that Fuzzy ART
templates are distinct , we calculated a lower bound
on the template size and we found an upper bound on
the similarity of the templates created. Furthermore,
in Section 4, we focused on access properties, investi-
gating the order of search of the F; layer nodes, find-
ing an upper bound on the number of nodes needed
in the Fy layer of Fuzzy ART to learn an arbitrary
list of input patterns, and proving the direct access
property of patterns to perfectly learned templates.
Also, in Section 5, we concentrated on the orienting
subsystem and reset events and elaborated on the in-
terrelationship between the o and p parameter values
needed in Fuzzy ART simulations. Finally, in Section
6, we shifted our attention to the number of list pre-
sentations required by Fuzzy ART to learn an arbi-
trary list of patterns repeatedly presented to it. Most
of the results presented in Section 6 were valid for bi-
nary input patterns and fast learning. The strongest
result (Theorem 6.1) stated that for small a values
(i.e., @ < p/(1 - p)), learning will be complete in one
list presentation. Weaker results were also presented
in Section 6, where in order to come up with a defi-
nite upper bound on the number of list presentations
needed we restricted either the o range or the p range.
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Table 3: Consequences of Theorem 6.1 and Theorem 6.2 for L < 5

(a) General Case

Range of a Range of p Number of Number of
template sizes | lists needed
a€ (0,maz(if;, g3)]  and p€(0,1] <M-1 1
a€ (M (M - 3),00) or pe(1-£,1] <2 1
a€ (MM —4),}M(M -3)] or pe(l-&,1- &) <3 <2
a€ (AM(M -5),1M(M -4)] or pe(l-#1-F <4 <3
a€ (JM(M —6), sM(M —5)] or pe(1-F,1—- 4] <5 <4
(b)Special Case for M =10
Range of o Range of p | # of template sizes | # of lists needed
a€ (0,maz(;£;,0.25)] and  p€(0,1] <9 1
a€ (35, 00) or p€(08,1]] <2 1
o€ (20, 35) or p€(0.7,0.8] <3 <2
o€ (12.5,20] or p€(0.6,0.7] <4 <3
o€ (8,12.5) or p€(0.5,0.6) <5 <4t
*Note: The last line (corresponding to the extention of Theorem 6.2 for L = 5) is valid
under the assumptions that the input patterns are presented cyclicly and M > ¢
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